Defect-mode-like transmission and localization of light in photonic crystals without defects
نویسندگان
چکیده
منابع مشابه
Silicon Solar Cell Light-Trapping Using Defect Mode Photonic Crystals
Nanostructured active or absorbing layers of solar cells, including photonic crystals and wire arrays, have been increasingly explored as potential options to enhance performance of thin film solar cells because of their unique ability to control light. We show that 2D photonic crystals can improve light trapping by an enhanced density of optical states and improved incoupling, and demonstrate,...
متن کاملTransmission properties of one dimensional Photonic Crystals with defects
The transmission properties of one dimensional Photonic Crystals (PCs) with two defects having structures (HL) n (D1LD2L) m (HL) n, where m is the stack number of the Photonic Quantum Well (PQW) have been theoretically investigated by the transfer matrix method. The thickness and temperature dependence of the defect modes have been studied by considering Si and air as the high and low refractiv...
متن کاملNonlinear transmission and light localization in photonic-crystal waveguides
We study light transmission in two-dimensional photonic-crystal waveguides with embedded nonlinear defects. First, we derive effective discrete equations with long-range interaction for describing the waveguide modes and demonstrate that they provide a highly accurate generalization of the familiar tight-binding models that are employed, e.g., for the study of coupled-resonator optical waveguid...
متن کاملSlow light in photonic crystals
The velocity of light in vacuum, c, is approximately 3 × 108 m s–1, fast enough to make 7.5 round-the-world trips in a single second, and to move a distance of 300 mm in 1 ns. This ultrahigh speed is advantageous for efficient data transmission between two points, whether they are separated on a global scale or on a single chip; however, it also makes control of optical signals in the time doma...
متن کاملSlow light in photonic crystals
The problem of slowing down light by orders of magnitude has been extensively discussed in the literature. Such a possibility can be useful in a variety of optical and microwave applications. Many qualitatively different approaches have been explored. Here we discuss how this goal can be achieved in linear dispersive media, such as photonic crystals. The existence of slowly propagating electrom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2010
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.82.165131